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1 Introduction

The following sets are used in this paper:

P = the set of odd prime numbers,
E = the set of even integers reater than 4.

The table below summarizes the results presented in this paper where the
letter e ∈ E . A relationship between e and twin primes is well known but a
possible twin prime connection between e and e+2 appears new. The impor-
tant cycles are related to the set e (mod 6) ≡ {0, 2, 4}, written as é in col 3,
where a new pattern, verified to 109, is presented in col 6 in which an intrigu-
ing relationship exists between Goldbach, twin primes, and cousin primes.
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Patterns

e k é Rk Shift 4p ,4q

6 1 0 ↘• (3, 3)→ (5, 3) 2 , 0
8 2 2 1↙• (5, 3)→ (3, 7) −2 , 4
10 3 4 ↘•11 (3, 7)→ (5, 7) 2 , 0
12 4 0 0↘•10 (5, 7)→ (7, 7) 2 , 0
14 5 2 10↙•01 (7, 7) → (5, 11) −2 , 4
16 6 4 1•00↘•1 (11, 5)→ (13, 5) 2 , 0
18 7 0 0110↘••0 (11, 7)→ (13, 7) 2 , 0
20 8 2 10↙•00•01 (7, 13)→ (5, 17) −2 , 4
22 9 4 1•00↘•0011 (11, 11)→ (13, 11) 2 , 0
24 10 0 0110↘••0110 (11, 3)→ (13, 3) 2 , 0
26 11 2 10↙•00•00101 (7, 19)→ (5, 23) −2 , 4
28 12 4 0•00↘•0010010 (11, 17)→ (13, 17) 2 , 0
30 13 0 0010↘••0110100 (11, 19)→ (13, 19) 2 , 0
32 14 2 10000↙•00100001 (13, 19)→ (11, 23) −2 , 4
34 15 4 1100↘•0010010011 (11, 23)→ (13, 23) 2 , 0
36 16 0 01100•0↘•10100110 (17, 19)→ (19, 19) 2 , 0
38 17 2 00100000↙•00000100 (19, 19)→ (17, 23) −2 , 4
40 18 4 1000100↘•0010010001 (17, 23)→ (19, 23) 2 , 0
42 19 0 0100↘•100•0100110010 (11, 31)→ (13, 31) 2 , 0
44 20 2 10↙•00•00000000100101 (7, 37)→ (5, 41) −2 , 4
46 21 4 1•00000↘•0010010000011 (17, 39)→ (19, 39) 2 , 0
48 22 0 0110↘•001•0000110010110 (11, 37)→ (13, 37) 2 , 0
50 23 2 10100•00100000100100101

Observation: ∀ 6 ≤ e ≤ 109 ∃ p, q ∈ P 3 e = p + q and

e (mod 6) ≡ 0→ (p + 2) ∈ P and e + 2 = (p + 2) + q,
e (mod 6) ≡ 2→ (p− 2) and (q + 4) ∈ P and e + 2 = (p− 2) + (q + 4),
e (mod 6) ≡ 4→ (p + 2) ∈ P and e + 2 = (p + 2) + q.
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2 Patterns

When e ∈ E and e = p+ q for some p, q ∈ P , we call the pair {p, q = e− p} a
Goldbach Partition (GP)† for e. A cursory scan of the columns suggests sever-
al potential and intriguing patterns developed from sequences of GPs. First
consider the sequence (waterfall) of vectors in the fourth column representing
GPs for 6 ≤ e ≤ 50 where the • symbol indicates a value 1 that is integral
to the waterfall pattern. Although other examples can also been observed,
those rendered serve as sufficient examples to support the results obtained in
this paper. The fifth and sixth columns also contain patterns which will be
explained in the subsequent sections. For each e ∈ E , k = (e− 6)/2 + 1, each
Rk will eventually be identified with a logical vector representing all GPs for
e. Moreover, as we move from k to k + 1, the sequence exhibits a partial
left-shift or right-shift pattern indicated by the arrows and this relationship
has been tested to hold for every 6 ≤ e ≤ 109. ‡ This pattern suggests that if
e = p+q for p, q ∈ P , then either p+2 or p−2 ∈ P and p+2 or p−2 ∈ e+2.

3 A Unique Logical Vector

To unpack this Table, we begin by defining a unique logical vector indexed
by the odd integers greater than 1.

A = (13, 15, 17, 09, 111, 113, 015, 117, . . . , b2n+1, . . .), (1)

where we define the binary coordinate b2n+1, 1 ≤ n, to be 1 when 2n + 1 is
a prime and 0 otherwise. For simplicity, we will drop the subscripts of odd
integers greater than 1 on all A, 1 ≤ i vectors and consider them implied
from now on. We define an injection mapping I : {(b1, b2, b3, . . . , bk . . .) : bi ∈
{0, 1}} → P by

I(bi) = pi only when bi = 1. (2)

I(A) = P follows immediately from (1) and the definition of the injection
mapping I. For example, R5 = (1, 0, 1, 0, 1) implies I(R5) = {3, 7, 11}.

† https://mathworld.wolfram.com/GoldbachPartition.html
‡ A C++ program capable of performing calculations with several output options

relevant to this paper, including the procedure in the Table, is available from github by
evaluating “git clone https://github.com/mezzino/Goldbach-Patterns”. The README
file includes instructions for executing the routine and interpreting the results. We used
this C++ program to verify these ideas for 6 ≤ e ≤ 109.
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4 Logical Paring

From this point on we will assume that e ∈ E and concentrate on the odd
primes and their double-primes, starting with e = 6 = 2 · 3. If 3 is one of
the primes in its GP, then the other prime must be e− 3, or equivalently, in
terms of double primes, e = (2 · 3 + 2 · (e− 3))/2 and k = (e− 6)/2 + 1. This
latter expression shows that e can also be viewed as the mid-point of a line
segment between two double primes for every GP. Hence we introduce the
following notation

Ak = A∩ {(b1, . . . , bk) : bi ∈ {0, 1}} = {(1, 1, 1, 0, . . . , bk) : bk ∈ {0, 1}}. (3)

Observe that the injection mapping I identifies Ak with the complete se-
quence of primes P . Correspondingly, we define

Bk = {(bk, . . . , 0, 1, 1, 1) : bk ∈ {0, 1}}, (4)

obtained from Ak by reversing the coordinates. It will be convenient to state
that for any vector ~v, we define (~v)i to be the ith coordinate of ~v, and define
the coordinate-wise conjunction of Ak and Bk by

Ak ⊗Bk = (Rk)i =

{
1 if (Ak)i & (Bk)i = (Ak)i · (Bk)i = 1, 1 ≤ i ≤ k,
0 otherwise.

(5)
If the interest is only in the existence of at least one solution, then, Ak⊗Bk 6=
O is equivalent to the inner product 〈Ak,Bk〉 6= 0. Therefore, a solution will
fail to exist if and only if Ak ⊥ Bk, or equivalently, Bk ∈ A⊥k .

Beginning with e = 6, k = 1, we obtain A1 = B1 = R1 = (1) and for
e = 8, k = 2, A2 = B2 = R2 = (11). Continuing, let e = 30, k = 13 and

A13 = (1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0),
B13 = (0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1).

(6)

The complete space of partitions for e = 30 is obtained from

A13 ⊗B13 = R13 = (0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0), (7)

and I(R13) = {7, 11, 13, 17, 19, 23} is precisely the complete set of values
which when paired represent all the GPs for e = 30. The corresponding
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pairing applied to I(R13) yields

7 + 11 + 13 + 17

30

+ 19

30

+23

30

. (8)

That is, not only is a partition found but, at least in this case, every par-
tition is found. Also, e will be a double-prime whenever |I(Rk)| is odd as
seen for e = 14, k = 5 with I(R5) = (3, 0, 7, 0, 11), yielding e = 7+7 = 3+11.

For any k > 0, the result Ak ⊗Bk 6= O suggests that Ak contains a subset,
identified by Rk, which is a mirror image of the corresponding subset in Bk.
Our core approach includes the principle of mirror symmetry . This example
suggests the following conjecture:

Conjecture: ∀e ∈ E , k = (e− 6)/2 + 1→ Ak ⊗Bk = Rk 6= O.

If |Rk| is odd, examine the point at the center. If this point is not zero, then
e is a double prime and we are done. Otherwise, begin with the centered
pair. If both are not zero, then e has a GP, as indicated in the preceding
example. If this condition fails, continue moving out maintaining symmetry
from the starting point. Clearly, Goldbach’s Strong Conjecture is equivalent
to this procedure always succeeds.

5 Twin Primes

Consider the natural symmetry of

Ak ⊗Bk = Rk = (b1, b2, . . . , bi . . . , bk−i+1, . . . , bk−1, bk), (9)

with bj = bk−j+1, 1 ≤ j ≤ k. A pattern within the sequence of Rks is seen
in the Table. Whenever bi = 1, 1 ≤ i ≤ k, symmetry implies the following
pairing:

(b1, b2, . . . , bi, . . . , bk−i+1 . . . , bk−1, bk) . (10)

In addition, GPs can be determined from

I(Rk) = {p1, p2, . . . , pi . . . , pk̂−i+1, . . . , pk̂−1, pk̂}, k̂ < k. (11)
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where, in general, k̂ primes are obtained. We now take s determined by the
symmetry indicated in (12) as follows:

{p1, p2, . . . , pj, . . . , pk̂−j+1

dj

, . . . , pk̂−1

d2

, pk̂}

d1

(12)

where 1 ≤ j ≤ b(k̂ + 1)/2c represents the index of the smallest prime in each
difference. In general, we obtain {d1, d2, . . . , dj, . . . , db(k̂+1)/2c} where each dj
is associated with a pj ∈ Rk. In addition to GPs conjectured by the previ-
ous analysis, a closer examination of the Table exposes a deeper relationship
between these differences at e and at e + 2.

Curiously, for most values of e there exists a non-zero value at the ith co-
ordinate for which a non-zero coordinate exists at either i + 1 or i − 1 at
e + 2. This is equivalent to saying that for each e, there exists a di(e) 6= 0
where either di−1(e + 2) or di+1(e + 2) are non-zero. Assuming p ≤ q,
since, di(e) = q − p, then either di+1(e + 2) = di(e) − 2 = q − (p + 2) or
di−1(e + 2) = di(e) + 6 = (q + 4) − (p − 2). From the prior analysis of the
conjectured structure of Rk, then either p + 2 ∈ P or p − 2 and q + 4 ∈ P
reflected in the Table’s sixth column. Also, for the procession from e to e+2,
di either increases by 6 or decreases by 2 for the appropriate case. Hence,
in either case, (e + 2) admits a GP. Also, there is a predictability to this
phenomenon.

Continuing with the example for e = 30, k = 13 together with e = 32, k =
14, we have 30 (mod 6) ≡ 0, and

R13 = 0010↘•10110100 → 30 = 11 + 19 (d5 = 8),
R14 = 10000 • 00100001→ 32 = 13 + 19 (d6 = 6),

(13)

where the indexes correspond to the positions of the relevant primes. In
addition, the transition of the differences from d5 to d6 yielding d5 − d6 =
2 = 4q − 4p is directly related to column 6 in the Table. In fact, it is
these differences which initially led to discovering the patterns reflected in
the Table. For e = 32, k = 14 together with e = 34, k = 15, we have
34 (mod 6) ≡ 2, and
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R14 = 10000↙• 00100001 → 32 = 13 + 19 (d6 = 6),
R15 = 1100 • 0010010011→ 34 = 11 + 23 (d5 = 12).

(14)

Note that for e = 34, k = 15 together with e = 36, k = 16, we have
34 (mod 6) ≡ 4 but we do not select the obvious transition 5→ 7. Including
sequential solutions beginning with p = 5 occasionally breaks the e (mod 6)
cycle of 0, 2, 4.

R15 = 1100↘• 0010010011→ 34 = 11 + 23 (d5 = 12),
R16 = 01100 • 0110100110→ 36 = 13 + 23 (d6 = 10).

(15)

For 6 ≤ e ≤ 109 with e = p + q, p 6= 5, we have observed this phenomenon
remaining consistent as e (mod 6) cycles through 0, 2, 4. Note that if you
allow p = 5, the only prime which both is a twin and has a twin, the cy-
cle is frequently not preserved. Also, when e (mod 6) ≡ 0 or 4 except when
p = 3, p cannot end in 3 because p + 2 would end in 5 and not be a prime
and when e (mod 6) ≡ 2 except when p = 7, p cannot end in 7 and q cannot
end in 1 again because p− 2 and q + 4 would end in 5 and not be prime.

6 Conclusion

The existence of infinitely many twin prime numbers allows us to ensure that
there exists infinitely many even numbers e = 2n such that e − 1 and e + 1
are twin prime numbers. Hence, this implies that infinitely many even num-
bers can be written as the sum of two twin prime numbers, and we will have
proved one important piece of Goldbach’s Strong Conjecture. In addition,
our observation implies a surprisingly regular pattern mod 6. That is, for
each e (mod 6) option, at least one solution from e to e+ 2 is obtained using
the technique suggested in the observation. In addition, for every e > 6 there
exists at least one p such that e/10 < p which satisfies both the twin prime
and cousin prime conjectures. Interestingly, since p + 2, or p − 2, or q + 4
appear in this discussion, the theory of twin primes and cousin primes may
share another curious relationship to Goldbach’s Strong conjecture.
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